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Abstract

Results from a theoretical and numerical evaluation of on-line optimization algorithms were used to recommend
the best way to conduct on-line optimization. This optimal procedure conducts combined gross error detection and data
reconciliation to detect and rectify gross errors in plant data sampled from the distributed control system. The TjoaBiegler
method (the contaminated Gaussian distribution) was used for gross errors in the range of 3s - 30s or the robust method
(Lorentzian distribution) for larger gross errors. This step generates a set of measurements containing only random errors
which is used for simultaneous data reconciliation and parameter estimation using the least squares method. Updated
parameters are used in the plant model for economic optimization that generates optimal set points for the distributed
control system. Applying this procedure to a Monsanto sulfuric acid contact plant, a 3% increase in profit and a 10%
reduction in SO, emissions were projected over current operating condition which is consistent with other reported

applications.
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Introduction

On-line optimization provides a means for
maintaining a plant near its optimum operating
conditions by providing set points to the plant's
distributed control system. This requires the solution of
three nonlinear programming problems (NLPs): for
combined gross error detection and data reconciliation,
for parameter estimation and for process optimization.
The plant model is a set of constraint equations in the
NLPs and has to match the current performance of the
plant. The parameters in the plant model are updated
using data sampled from the distributed control system
that has been processed through gross error detection and
data reconciliation procedures. The execution frequency
for set point updating is based on the settling time of the
process, i.e. the time required for the process to move
from one set of steady-state operating condition to
another.

In this paper we summarize results of a study to
investigate the best way to conduct on-line optimization,
and this includes a theoretical and numerical evaluation
of algorithms used in on-line optimization. Previous
studies have been overviews of industrial applications or
focused on individua components of on-line
optimization. To date, there have been no detail
descriptions of the structure of on-line optimization.
This work used a new sulfuric acid plant equipped with a
Bailey INFI 90 distributed control system designed by
Monsanto and operated by IMC Agrico. A complete
description of the methodology is available (Chen, 1998)
and is summarized here.

To summarize industrial applications of on-line
optimization, Ayala (1997) reviewed the 31 Aspen
CLRTO systems in operation and 21 in progress of
which about 50% were refinery applications, 30% were
ethylene plants and 20% were chemical processes. The
CLRTO system included an open form process model,

large-scale SQP optimizer, steady state detection, data
validation and interfaces to operations personnel.
Successful applications required a constrained multi-
variable control system, and payouts were less than a
year. Other recent industrial applications include Kelly,
et al. (1996), and Bayles, (1996) that reported 3 to 15%
increase in profit and improvements in plant operations.

Important recent results for gross error
detection, data reconciliation and parameter estimation
were reported by Albuquerque, Biegler and Kass (1997),
Albuquerque and Biegler (1993), Crowe (1994);
Johnston and Kramer (1995), for steady state systems
and Albuquerque and Biegler (1996) for dynamic
systems. Others included the measurement test method
using the normal distribution (Mah and Tamhane 1982),
the Tjoa-Biegler method using a contaminated Gaussian
distribution {Tjoa and Biegler, 1991), and the robust
function methods using the Lorentzian distribution
(Huber, 1981 and Johnston and Kramer 1995) and the
Fair function (Albuquerque and Biegler, 1995).
Evaluations of these methods used hypothetical process
models that had all measured variables.

Albuquerque and Biegler (1996) and Johnston
and Kramer (1995) briefly discussed the theoretical
evaluation of algorithms using the influence function.
Serth and Heenan (1987) have compared the
performance of the modified iterative measurement test
(MIMT) and related algorithms and concluded that
MIMT represents the best combination of computation
speed and efficiency (accuracy). Kim, et al., (1997)
reported that performance of MIMT was enhanced by a
using nonlinear program (NLP) technique for a simple
adiabatic CSTR process that has six variables and three
constraints.

Summarizing the status of the steps in on-line
optimization, gross errors can be detected by time-series



screening and statistical methods. The screening method
removes values that are not within the bounds set for the
process variable, and this procedure is incorporated in
current industrial systems. However, screening methods
can not detect persistent gross errors such as instrument
bias and process leaks. Statistical methods can detect
these errors, but they are more complicated and require a
detailed plant model. They provide the most effective
way to detect the gross errors in plant data.

Least squares or measurement test is the only
statistical method that has been reported which has been
applied to actual chemical and refinery processes
(Simulation Science, 1991). The normal distribution
used by this method can cause biased estimates for
reconciled variables when gross errors are present.
Therefore, methods for gross error detection have been
proposed using the contaminated Gaussian distribution
and robust functions that are relatively insensitive to the
presence of gross errors.

Errors-in-variables models are required for
parameter estimation since all measured variables in
chemical plants contain random errors and possibly gross
errors (Kim, Liebman and Edgar, 1990). Least squares,
likelihood function, and Bayesian methods have been
used for traditional parameter estimation (Stewart,
Caracotsios and Sorensen, 1992), and they can be
modified for use in on-line optimization. The
optimization problem from parameter estimation is
difficult to solve since the optimal values are usualy in
the interior of the region and not constrained on the
boundary, Ayaa (1997).

Economic optimization in on-line optimization
generates a set of optimal set points for the plant that
maximizes profit. Also, the optimization objective can
include minimizing waste generation and energy
consumption or maximizing product quality.

Mathematical programming languages such as
GAMS and AMPL make formulation straightforward.
Also they provide several efficient solvers, eg., MINOS
and CONOPT (Chen, et al, 1996).

A precise plant model is necessary to simulate
the process for on-line optimization. It serves as
constraints for data reconciliation, parameter estimation
and economic optimization. For industrial processes an
open form equation based model is required, Ayaa
(1997). Closed form sequential modular models do not
have the computation speed and sol ution robustness.

The sulfuric acid contact process at IMC Agrico
Company’s plant in Convent, Louisiana was used for
evaluating methods for the best way to conduct on-line
optimization. Also, an interactive on-line optimization
program has been developed which can be used to apply
these methods to a new installation. The following
paragraphs describe these methods and their use in the
on-line optimization program.

Methodsfor On-Line Optimization

In on-line optimization three nonlinear

programs are solved for combined gross error detection

and data reconciliation, simultaneous data reconciliation
and parameter estimation, and plant economic
optimization. Each optimization problem has a similar
mathematical statement.

Optimize:
Subject to:

Objective function (@8]
Constraints from plant model

The objective function is a joint distribution function for
data reconciliation or parameter estimation and a profit
function (economic model) for plant economic
optimization. The constraint equations include material
and energy balances, chemical reaction rates,
thermodynamic equilibrium relations, anong others.

There are two ways to conduct on-line
optimization. One is the traditional way that has three
nonlinear optimization problems solved sequentially
(two step method). In simultaneous gross error detection
and data reconciliation, gross errors in the plant data are
eliminated or rectified, and we propose that a set of
measurements with only random errors be constructed by
using rectified values for variables with gross errors.
This provides measurements with only random errors for
simultaneous data reconciliation and parameter
estimation. Then updated values of parameters are used
in the plant model for economic optimization to generate
the optimal set points for plant DCS. In the other way,
we propose that gross error detection, data reconciliation,
and parameter estimation be conducted simultaneously to
rectify gross errors, reconcile process variables, and
estimate plant parameters by solving one nonlinear
programming problem (one step method).  Then,
economic optimization is conducted to determine the
optimal set points. A comparison of these two methods
isgiven in the Results and Discussion section.
Algorithms for Combined Gross Error Detection and
Data Reconciliation

The process data from a distributed control
system is subject to random and gross error, and the
gross error must be detected and rectified before the data
is used to estimate plant parameters. Simultaneous gross
error detection and data reconciliation agorithms are
used to detect and rectify the gross errors in
measurements. These algorithms are measurement test
method using a normal distribution, Tjoa-Biegler's
method using a contaminated Gaussian distribution, and
robust method using robust distribution functions.

Measurement Test: The measurement test
method assumes al measurements are subject to only
random errors with known normal distributions under
null hypothesis and the measurement errors are
independent of each other. The measurement errors are
estimated by maximizing the joint probability density
function or minimizing the sum sguares of the
standardized measurement errors, e'S'e, subject to
constraints which are the process model. This is the
well-known least squares method, and it is expressed as:



Minimize: e'Ste=(y-x'Sy-x) 2
X,z
Subject to: f(x,z,q)=0

X ExXEXY, 2 EZEZ.

where equality constraints f, are functions of measured
variables x, unmeasured variablesz and parameters q, y
are the measurements sampled from distributed control
system. In addition, there are upper and lower bounds on
the process variables. The relation between
measurements y and the true values x for measured
variables is defined by y = x + e where the vectors e
represents the measurement errors that could be random
or gross errors. Also, S is the diagonal matrix of the
known variances s;? of measurement errorse.

Solving Eq. 2 will estimate the true values for
the measured variables x and unmeasured variables z.
Then, the measurement errors can be determined by e=y
-X. In Eq. 2, q isaconstant vector representing the plant
parameters

After data reconciliation, the measurement
errors are determined. Then each measurement error is
examined to see if it contains a gross error using a test
statistic. See Chen (1998) and Mah (1990) for details. If
the value of test statistic, |g|/si, exceeds a critical value
C, then this measurement is said to have a gross error.
Otherwise, it contains only random error.

Tjao-Biegler Method: Tjoaand Biegler (1991)
and Albuquerque and Biegler (1995) have proposed a
contaminated Gaussian distribution function to describe
the measurement errors. A measurement is subject to
either random or gross error. The two possible outcomes
are: G = {Gross error occurred} with prior probability h
and R = {Random error occurred} with prior probability
(1-h). Therefore, the distribution of a measurement error
ist Pyi | %) = (1-h)P(yi | %, R) + h P(y;i | x, G) where
P(yi | %, R) is the probability distribution of a random
error and P(y; | %, G) is the probability distribution of a
gross error.

It was assumed that the random errors are
normally distributed with a zero mean and a known
variance s;?>. Also, it was assumed that the gross errors
are subject to a contaminated normal distribution which
has a zero mean and larger variance (bs;)?, (b >> 1). If
the measurement errors are independent of each other,
then the likelihood function (or joint probability
function) for all measurements are the products of the
distributions for individual measurement, and the
measurement errors are estimated by minimizing the
negative logarithm of the joint probability density
function. This gives the objective function used with the
constraints of Eq. 2 for Tjoa-Biegler’s method as:

After data reconciliation, each measurement is
examined with a test statistic to see if it contains a gross

error. See Chen (1998) and Tjoa and Biegler (1991) for
details.

The basic idea of robust estimation is to build a
robust distribution function r that is asymptotic to the
normal distribution or any pre-assumed rigorous
distribution function that describes the distribution
pattern of measurement errors under some idea
assumptions. The estimator (mean or variance)
determined by the robust distribution is insensitive to
extreme observations and yet maintains a high efficiency
(lower dispersion).

Robust Method: Two robust functions have
been proposed in literature for mean estimation, and they
are applicable for rectifying gross errors in data sampled
from the DCS. These robust functions are the Lorentzian
distribution proposed by Johnston and Kramer (1995),
that was originally presented by Huber (1981), and the
Fair function proposed by Albuquerque and Biegler
(1995).

Lorentzian distribution  function for a
measurement error is given as:

1
r(e) =—1 (4)
1+—e,2
2

where g is the standardized measurement error, i.e., g =
g /si = (yi - X)/si.

The robust function of measurement error using
Lorentzian distribution is the sum of the individual
distribution, and the objective function for the robust
method with Lorentzian distribution used with the
constraints of Eq. 2 is:
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The Fair distribution function for measurement
error is given as.

r(ei)=czge—‘|- Iog?m%i (6)
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The objective function for the robust method
with Fair function (Albuquerque and Biegler, 1995) used
with the constraints of Eq. 2is:
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where ¢ is a tuning parameter. The Fair function is
convex and has continuous first and second derivatives
(Albuquergue and Biegler, 1995).

Evaluation of Distributions Functions for Data
Reconciliation and Gross Error Detection

The theoretical evaluation of the algorithms is
based on the robustness and precision of an estimator
from a distribution function (Seber, 1984). Robustness
of an algorithm is the ability to ignore the contribution of
extreme data, i.e., insensitive to the presence of gross
error; and it is measured by the influence function of the
distribution function. The precision of an estimator is
given by the accuracy of the estimated value, and it is
measured by the relative efficiency of a distribution
function. The relative efficiency is defined as the ratio of
the variances obtained from two distribution functions
(Larsen and Marx, 1986).

The influence function quantifies the influence
of a measurement on the estimated value in data
reconciliation. For M-estimate, the influence function is
proportional to the derivative of a distribution function
with respect to the measured variable, @p/ox) (Huber,
1981 and Hampel, et al., 1986), i.e.,

IF o« 3plox (8)

For the norma distribution used in the
measurement test method it can be shown, Chen (1997),
that the influence function is:

|FMTu7:—':+ 9)

As shown in Eq. 9, the influence function is
proportional to the standardized measurement error, €; =
(yi - %)/oj, and it is not bounded when the measurement
error becomes infinite as shown in Figure 1. This means
that the least sguares method is unable to bound the
effect of large gross errors on the estimation of
reconciled measurements. The presence of gross errors
will result in biased estimation of reconciled
measurements from measurement test, and the degree of
biasis proportional to the magnitude of the gross errors.

For the contaminated Gaussian distribution used
inthe Tjao Biegler's method, it can be shown, Chen
(1998), that the influence function is:
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Asshown in Eq. 10, the influence function for
the contaminated Gaussian distribution is a function of
the standardized measurement error, €; = (y; - %)/o;. For
small errors e.g., € < 2, the exponential term in the EQq.
10 is much larger than the second term n/b® (or n/b) for
n = 0.5and b = 10. For this case the influence function
simplifies to the equation obtained for normal
distribution, Eq 9; and it is the same as one for the
measurement test method. The contaminated Gaussian
distribution acts like a normal distribution for small
errors as shown in Figure 1. The distribution function
for random error dominates the contaminated Gaussian
distribution, and the distribution for the gross error does
not contribute.

For larger errors, eg., € > 4, the exponential
termin Eq. 10 is much smaller than the second term 1/b®
(or n/b) for n = 0.5 and b = 10. The influence function
can be simplified to give:

FplX-18 (11)
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For larger errors, the distribution function for gross
errors dominates the contaminated Gaussian distribution.
As shown in Eqg. 11, the influence function of the
contaminated distribution function is the same as the
normal distribution but with the magnitude reduced by
b®. This influence function is still a function of the error
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Figure 1 Influence Functions of Distributions

magnitude as shown in Figure 1, and it is unbounded
when the error becomes infinite.

In the contaminated Gaussian distribution, b is a
tuning parameter to shape the distribution. Increasing b
will reduce the effect of a gross error on the estimation
and increase the robustness of this approach. However, it
will decrease the asymptotic efficiency to the normal
distribution. In the practical applications, b is usualy
chosen between 10-20; and therefore the effect of a gross
error on the estimation is reduced 100-400 times
compared with the measurement test method. Also,
gross errors are rarely infinite, and generally they are of
moderate magnitude (about 50 to 200). Hence, for gross



errors of this magnitude the effect of gross errors on data
reconciliation is negligible using the contaminated
Gaussian distribution. Therefore, it is concluded that a
method based on the contaminated Gaussian distribution
should be robust for the estimation of reconcilled
measurements when gross errors are of a moderate
magnitude.

The Lorentzian distribution function was given
by Eq. 4, and its influence function is:

r )
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As shown in Figure 1, the influence function of
Lorentzian distribution depends on the error size, and IF
increases and then decreases with increasing error. The
IF of the Lorentzian distribution has the advantage that it
has larger values for measurements with smaller
(random) errors and has smaller values for measurements
with larger (gross) errors. This means that a method
based on the Lorentzian distribution should not be
affected by contributions from measurements with gross
errors.

The Fair function is given in Eg. 7, and its
influence functionis:
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As shown in Figure 1, this influence function increases
with increasing error and approaches a constant c. The
effect of gross errors on a method based on this
distribution is bounded by the value ¢ when the error
becomes infinite. The parameter ¢ in Fair function
determines the robustness and efficiency of the
estimation. Smaller values of ¢ will give a more robust
method, but it will be less efficient. A method based on
the Fair function is able to bound the effects of very large
Qross errors.

A effective distribution function for a data
reconciliation algorithm has to be insensitive to the
presence of gross error and efficient for measurements
with random errors. The influence functions for four
distributions are essentially the same for errors up to lo.
The influence function of Lorentzian distribution
function is the least sensitive of the four to errors as
shown in Figure 1. The influence function for the
normal distribution increases linearly with the increasing
errors, and biased estimates are obtained if
measurements with large gross errors are used in data
reconciliation. The influence function for the Fair
function is similar to the normal distribution, except that
it is bounded for larger (gross) errors. Compared with

the normal distribution, it is |less sensitive to the presence
of larger gross errors and is able to bound the effect of
extremely large gross errors. However, it gives biased
estimation when measurements with large gross errors
are included in the data for data reconciliation. The
influence  function for contaminated Gaussian
distribution increases with increasing errors to 2o,
decreases to 45, and then increases linearly at a much
lower rate. It is relatively insensitive to errors, but it has
the unbounded nature of the normal distribution for
errors larger than 50c.

In summary, the evauation of influence
functions for the probability distributions shows that the
contaminated Gaussian and Lorentzian distributions have
influence functions that are relatively insensitive to gross
errors. Methods based on the contaminated Gaussian
distribution should have the best performance for
reconciling measurements when moderate size gross
errors are present; and methods using the Lorentzian
distribution should be more effective for very large gross
errors.

Process Description

The IMC Agrico contact plant in Convent,
Louisiana was designed by the Enviro-Chem System
Division of Monsanto and began operation in March,
1992. It produces 3200 TPD 93 %(wt) sulfuric acid and
process steam as a by-product, and it has a Bailey INFI
90 distributed control system. This process incorporates
many of the types of process units found in chemical
plants such as packed bed catalytic reactors, absorption
towers and heat exchanger networks, among others. It
represents the state-of-art contact sulfuric acid
technology.

In the contact process, molten sulfur is
combusted with dry air; and the reaction is exothermic
and goes to completion in the sulfur furnace. The gas
leaving the burner is composed of sulfur dioxide,
nitrogen, and unreacted oxygen at approximately
1400°K. Heat from this gas is recovered in the waste
heat boiler as byproduct steam. The gas enters the
packed bed catalytic reactor that consists of four beds
packed with two different types of vanadium pentoxide
catalyst. Here sulfur trioxide is produced from sulfur
dioxide, and the reaction is exothermic and approaches
equilibrium exiting each bed. Heat is removed to shift
the equilibrium, and this heat is used to produce steam.
Also, the equilibrium conversion is increased in the
fourth catalyst bed by removing SOz in the inter-pass
absorption tower. In the final absorption tower, SO; is
removed from the gas with 98 wt% sulfuric acid. Gases
exiting the final absorption tower go to the stack with
less than 400 ppm SO, as required by regulations for
emissions, no more than 4.0 |b of sulfur dioxide per ton
of sulfuric acid produced.

Process M odel

A open form model was developed from the
process flow diagram and process design data. The
packed bed catalytic reactor was simulated with a kinetic



model developed by Harris and Norman (1972) and
Richard (1987). The process model has 43 measured
variables, 732 unmeasured variables, 11 parameters and
761 linear and nonlinear equality constraints. The model
equations were programmed in GAMS (Generd
Algebraic Modeling System), and the process model was
incorporated in the three optimization programs using
GAMS/CONOPT. A comparison of results from the
process model with the plant design data was made to
assess the validity and accuracy of the simulation. The
simulation matched the plant design data within the
accuracy of the data. Also, a comparison was made with
process data taken from the plant operating five years
after start-up, and the simulation with parameters
updated with reconciled plant data agreed within the
accuracy of the data, e.g. outlet temperatures from the
packed bed reactors agreeing within 3°F. Details of
these comparisons are given by Chen (1998).
Process M easur ements

The 43 process measurements obtained from the
distributed control system included 25 temperature, 11
flow rate, 2 pressure and 5 composition measurements.
The standard deviations were determined based on 61
plant data set from 11 consecutive days. These process
variables and their associated standard deviations are
given by Chen (1998). Of these 43 measurements, 18
are required to determine the state of the process
Resultsand Discussion

Process Optimization: Three optimization
programs for on-line optimization were written in GAMS
for simultaneous gross error detection and data
reconciliation, simultaneous data reconciliation and
parameter estimation, and plant economic optimization.
The gross error detection and data reconciliation program
has options to use the least sguares method, the
contaminated Gaussian distribution, and the Lorentzian
function. The simultaneous data reconciliation and
parameter estimation program uses the least squares
method. Also, a plant data file from DCS and parameter
file from the previous on-line optimization are included
for use by the simultaneous gross error detection and
data reconciliation program. This program is executed to
generate a file of plant data that contains only random
errors.  This data file is used in simultaneous data
reconciliation and parameter estimation program, and
executing the parameter estimation program generates a
file of estimated process parameters and a file of
reconciled plant measurements. The parameter file is
used in the economic optimization, and the economic
optimization program generates a file containing the
optimal set points to be sent to a distributed control
system. In addition, comprehensive output files are
generated for each optimization program.

Two sets of plant data from DCS were used to
evaluate on-line optimization of the contact process, and
the details of these optimal solutions are reported by
Chen (1998). Six measurements of the total of 43 were
detected as containing gross errors using the

contaminated Gaussian function option. These were four
temperatures, a flow rate and a composition, and they
were caused by incorrectly calibrated instruments. These
values were replaced by reconciled data, and the
simultaneous data reconciliation and parameter
estimation program was executed. Then the updated
parameters were used in the plant model for economic
optimization to obtain the optimal set points for the DCS.
For the two sets of plant data, economic optimization
gave an increased profit of 2.3% (or $313,000/year) and
3.1% (or $410,000/year) over current operating
conditions. Also, 1.8% and 2.7% increase in profit were
obtained with a 10% reduction in SO, emissions for the
two set of plant data. This is consistent with other
reported applications of on-line optimization and could
lead to atypical payback of one year (Ayala, 1997).

Several other cases were reported by Chen
(1998) with increased profits and reduced emmissions
comparable to those above. Also, the least squares and
Lorentzian function options of the combined gross error
detection and data reconciliation program were used with
the plant data. The least squares option only detected
three of the gross errors, and the Lorentzian function
option incorrectly detected eight more gross errors than
the contaminated Gaussian function option. These
results are consistent with the theoretical performance of
these methods as discussed earlier.

An evauation of the sensitivity of the
reconciled data to the process parameters was conducted
using data from the DCS, and the plant design data. An
average difference of 10% in the parameters gave a
comparable difference in the reconciled data.

One and Two Step Methods: The two ways to
conduct on-line optimization were evaluated using 215
sets of simulated plant data. The two-step method had a
4% smaller variation on estimated parameter values,
6.5% larger error reduction, and 10.6% larger relative
standard deviation reduction on reconciled data than one-
step method. Also, the two step method had 6.3% larger
gross error detection rate and committed 50% less of
type | errors than the one-step method. The two-step
method required 82% more computation time than the
one-step method. In summary, both one-step and two-
step were able to accurately estimate the plant
parameters and process variables for the sulfuric acid
process. Two-step method had better performance than
the one-step method but required more computation
time. Also, the one-step method eliminates the
interaction between two data reconciliations for gross
error detection and for parameter estimation.

Numerical Evaluation of Combined Gross Error
Detection and Data Reconciliation Methods

The measurement test, Tjao-Biegler
(contaminated Gaussian distribution) and  robust
(Lorentzian distribution) methods were evaluated using
the plant design data as the true values for the measured
variables. 645 sets of simulated plant data were



constructed from the plant data by adding random error
and one to four gross errors with magnitudes of 3o, 50,
100, 200, and 300 randomly.

For the single gross error cases, detaled
statistical results were obtained from 2560 runs. These
included gross error detection rate, number of type |
errors, and error reductions for these algorithms; and the
details are reported by Chen (1998). It was found that
the Tjoa-Biegler method has highest gross error detection
rates for the gross errors ranging in 30 to 30c followed
by the robust method. Also, the TjoaBiegler method
had the smallest number of type | errors, highest random
and gross error reduction for the gross error size from 3o
to 300. The robust method was superior to the Tjoa-
Biegler method when a gross error was larger than 300
which agrees the theoretical evaluations.

For the multiple gross error cases, detailed
statistical results were obtained from 2560 runs, and the
details are reported by Chen (1998). The comparisons
showed that the Tjoa-Biegler and robust methods
committed small numbers of type | errors than the others.
A modified compensation strategy proposed by Chen
(1998) was incorporated with measurement test method,
and it was conducted with the same simulated plant data
as other methods. The modified compensation
measurement test (MCMT) method significantly reduced
the misrectification that was committed by the
measurement test method for multiple and larger gross
errors.

For both single and multiple gross errors the
Tjoa-Biegler method had the best performance for
moderate gross error size (30 - 300) in simultaneously
rectifying both random and gross errors. The robust
method was the best when gross errors were larger than
300. The measurement test method had significant
biased reconciled measurements. The robust method
was the least sensitive to the variations of the gross error
size, and measurement test method was the most
sensitive.

Summary and Conclusions

The optimal procedure for on-line optimization
based on the results from this research is to conduct
simultaneous gross error  detection and data
reconciliation to detect and rectify gross errors in plant
data sasmpled from distributed control system using the
Tjoa-Biegler method (contaminated Gaussian
distribution) for gross errors in the range of 3 - 300 or
the robust method (orentzian distribution) for larger
gross errors.  This step generates a set of measurements
containing only random errors. Then, this set of
measurements is used for simultaneous parameter
estimation and data reconciliation using the least squares
method. This step provides the updated parameter values
in the plant model for economic optimization. Optimal
set points are generated for the distributed control system
from the economic optimization using the updated plant
and economic models.

Interactive On-Line Optimization System

An interactive on-line optimization program is
available from the authors that has a Windows interface
for entering the information needed to conduct on-line
optimization. Written in Visual Basic 5.0, the program
uses this information to write and run the three GAMS
optimization programs and generates the optimal set
points for the distributed control system. Also, summary
and detailed reports are prepared. Options include using
least squares, the Tjao-Biegler and robust methods.
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